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Interactive Effects Between Aerofoils 
and Time Independent Flow Perturbations 

A. A. F. Hashem* and R. E. Peacock+ 

A technique is developed to assess the interdependent effects of an aerofoil in the vicinity of, immersed in 
or passing through,  a shear flow. The two former cases in which there is no t ime-dependency are anal- 
ogous to an aircraft wing and slipstream combination,  while the latter case may be likened to a compressor  
rotor blade responding to a circumferential distortion. In the model, however, no t ime-dependent terms 
are included. 

A case study is made of an aerofoil of known geometry passing through a combined 
pressure/temperature distortion of stated initial geometry. The changes both in the streamline patterns of 
the distortion and of the pressure distribution are indicated and it is seen that the resulting lift response of 
the aerofoil bears some resemblance to that measured on rotating blades in compressors  with circumferen- 
tial flow conditions. 
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influence coefficient of y distribution 
lift coefficient 
pressure coefficient 
geometric coefficient of the aerofoil induced 
velocity 
error caused by the inexact position of streamline 
height of the aerofoil measured from the centre of 
the square-wave distortion (positive upwards) 
2L + 1 is the number ofpoints defining the aero- 
foil contour 
length of element on the aerofoil surfacel~ 
number of points on upper vortex sheet 
number of points on lower vortex sheet 
static pressure 
vortex sheet induced velocity derivatives 
name of a vector (eq. 3.3):~ 
parametric length along an aerofoil element~: 
free stream velocity 
velocity components 
resultant velocity 
width of the square-wave distortion 
cartesian co-ordinates 
vertical ordinate of the upper streamline 
vortex strength (per unit length) 
parametric y co-ordinate along vortex sheet 
segment 
density 
stream function 
parametric x co-ordinate along vortex sheet 
segment 
sheet vortex strength (per unit area) 
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See Fig. (2b). 

Subscripts 
I inlet condition 
a aerofoil 
af.  s aerofoil surface 
i, j point or segment indices 
n normal component 
s vortex sheet 
seg segment 
o reference conditions 

free stream conditions 

Superscripts 
' field properties in the modified plane 
- vector 
u' uniform flow condition 

l I N T R O D U C T I O N  

An aerofoil with uniform upstream flow has a character- 
istic behaviour which can be predicted in incompressible 
conditions using techniques derived by Martensen (1) 
and which agree closely with experimentally derived 
data provided that aerofoil incidence is between the stall 
limits. It has however been observed that shear in the 
flow alters the aerofoil pressure distribution and hence 
lift characteristic, increasing and decreasing the lift at 
any incidence depending upon whether the shear com- 
ponent Ou/ay is positive or negative (2). Indeed, a circu- 
lar cylinder, which is a non-lifting body in uniform flow, 
produces lift in a shear flow (3). 

In uniform conditions the homenergic, homentropic 
nature of the flow simplifies the establishment of condi- 
tions around an aerofoil but shear flows create non- 
linear complications either by their proximity to an 
aerofoil or by the immersion of the aerofoil in the shear. 
The position is exacerbated by upwash and downwash 
velocities around the aerofoil which, with its immersion 
in the shear, alter stagnation streamline conditions in 
changing the position and shape of the shear flow. It is 
therefore recognised that, not only does the shear flow 
have an effect upon the aerofoil response but the aerofoil 
modulates the shear flow. 
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Numerous observations indicated that inlet flow dis- 
tortions alter compressor performance and, in the in- 
stance of a circumferential distortion, since shear flows 
exist in the pitchwise (y) direction, it may be anticipated 
that a compressor blade, being the fundamental element 
of an axial flow compressor, will react to that shear flow. 
There is also likely to be an accompanied modulation of 
the distortion. Distortion modulation has been observed 
experimentally by, for example, Colpin and Kool (4) 
across a single rotor row and by Williams and Yost (5) 
in multi-stage compressors. Predictions of the change in 
shape of a distortion have been made by Greitzer and 
Strand (6) and by Hawthorne et al. (7). Greitzer and 
Strand (6), taking account of radial equilibrium, ad- 
dressed the situation of a flow with circumferential dist- 
ortion swirling in a compressor annulus. Although the 
rotation in the flow was created by upstream guide 
vanes, no blades were accounted for within the region of 
investigation in the annulus. Hawthorne et al. (7) 
allowed for the presence of blade rows in using the actu- 
ator disc assumption to resolve the non-axisymmetric 
flow through an annulus. 

The treatment in this paper permits the presence of a 
real aerofoil in the region of a distortion and considers 
the symbiotic relationship between the aerofoil and the 
distortion. It ignores annular effects by considering the 
flow to be two-dimensional, analogous to that of a wing 
with a slipstream perpendicular to its profile, a two- 
dimensional cascade, or to a very high hub/tip ratio ma- 
chine. In the solution offered the presence of one aerofoil 
only has been considered. This does not represent a limi- 
tation of the model but a simplification for computa- 
tional purposes. Blade pitching less than the order of 
the width of the distortion would tend to reduce 
the observed effect of the aerofoil presence on the distor- 
tion. For the data presented then, the compressor ana- 
logy is that of a large pitch/chord ratio cascade ingesting 
a distortion of narrow pitchwise extent. 

The model is quasi-steady and therefore does not 
represent fully the situation of a rotor passing through a 
distortion. A parallel model for cascades in distorted 
flows (8) has recently been applied to rotor data gained 
in experiment from a low speed compressor with 
distorted inflow (9) and in a stall free situation at moder- 
ate rotor speeds it is concluded that without the time- 
dependent terms, a good prediction of rotor behaviour 
results. At high rotor speeds this is not likely to be true, 
though. Account could nevertheless be taken of time- 
dependency by introducing an aerodynamic time-lag 
term into the calculation. 

As well as evaluating the blade pressure distribution 
in a field containing discrete regions of shear, the 
method calculates the revised streamlines consequential 
upon the lift generated by the aerofoil. The calculated 
flow modulation thus becomes one component in the 
blade row to blade row transfer function of a distortion. 

2 EQUATIONS OF FLOW 

The flow is characterized as steady, but with a circumfer- 
ential or pitchwise distortion and with no radial, gradi- 
ents, can be regarded as two-dimensional. Assuming it 
to be frictionless and incompressible, the continuity and 
momentum equations are: 

Ou Ov 
O-~" + Oyy = 0 (2.1a) 

Op Op 
u Oxx + v ~yy = 0 (2.1b) 

Ou Ou 10p 
u ~x + v Oy p Ox (2.2a) 

Ov Ov 10p 
u -~x + v Oy p Oy (2.2b) 

Equation (2.1b) is the incompressibility condition imply- 
ing that the density is constant along a streamline. It 
may, however, vary across streamlines in the presence of 
a distortion created by a pressure or temperature 
variation. 

Introducing the transformation by Yih et al. (11) a 
modified velocity may be defined as: 

,,'= JPu, v ' = ~ p ~ o V  (2.3, 

where Po is an arbitrarily chosen constant density. The 
two-dimensional field in which the flow moves at the 
modified velocity is identified as the modified plane. 
Rearranging, we obtain the modified continuity and 
modified momentum equation: 

ate' av' 
ffxx + Oy = 0 (2.1a') 

Ou' v' a u ' _  1 ap (2.2a') 
u' ~ + Oy Po Ox 

3v' v' do' 1 3p (2.2b') 
" '  + oU = - po 

A stream function satisfying eq. (2.1a') is therefore given 
by 

u'- a~,' a¢/ 
v' - (2.3') 

Oy ' Ox 

Now defining the vorticity as 

Or' Ou' 
o9' = (2.4) 

Ox Oy 
we get 

V2$ ' = -oY (2.1c) 

u' aoY v' am' + ~ = 0 (2.2c) 

It is noted that although for varying density flow the 
vorticity is proportional to the dynamic head along 
every streamline, eq. (2.2c) indicates that in the modified 
plane the vorticity is constant along a streamline. An 
important implication is that the flow retains the nature 
of classical incompressible flow. 

We thus have a generally non-linear, partial differen- 
tial equation 

V2~ ' = f(~O') 

3 THE MATHEMATICAL MODEL 

For an unbounded linear velocity distribution the vor- 
ticity of the flow far upstream of any disturbance is con- 
stant and will remain so across the field. Use is therefore 
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X 

Fig. 1. The aerofoil in the modified plane 

made of the Ludwig-Erickson method of representing 
flow who in (12) applied the technique to bounded re- 
gions. In the modified plane, then, the flow is approx- 
imated by regions of constant modified vorticity 
governed by a set of linear equations 

v 5 ¢ ;  = - (o~7~)~ 

where (co~)~ is the constant modified vorticity in the 
region i, any two regions are separated by a streamline 
initially of unknown shape. 

Now if we consider a parallel flow with superimposed 
square-wave distortion, it is clear that, at the distortion 
edge, a step change in stagnation pressure with or with- 
out a temperature distortion will lead to a step change in 
velocity. At this discontinuity the equivalent vortex sheet 
will be infinite and the model will break down. To avoid 
this, we shall consider only square-waves with a finite 
edge thickness in which shear is present, thus creating in 
effect, a trapezoidal pattern of distortion. Such a style of 
distortion in any case simulates more closely a real 
event. 

Figure I shows the corresponding velocity profile in 
the modified plane. The profile in the two edge-zones is 
arranged to produce a linear variation in the modified 
velocity. A reduction in edge zone thickness tends to 
reduce the importance of this restriction. 

The profile of Fig. I can simulate several classes of 
distortion: 
Ca) a combined stagnation temperature, stagnation 

pressure distorted flow 
(b) a constant incidence flow where at every streamline 

the level of temperature distortion and pressure 
distortion is matched to produce constant velocity 
from streamline to streamline. 

(c) pure stagnation pressure distortion. (In the special 
case of both constant static and stagnation pressure 
the flow is potential in the modified plane. The 
resulting lift force remains constant irrespective of 
any stagnation temperature distortion). 

Figure I shows that the flow pattern in the modified 
plane consists of the undisturbed velocity u~ the two 
hatched sheets containing the area distributed, constant 
(same magnitude but of opposite sign) vorticity of the 
flow and a joining region of constant velocity u'. 

For the purpose of calculation each sheet is divided 
into a number of segments {Fig. 2 indicates the upper 
sheet) although at a distance of ten to fifteen chord 
lengths from the aerofoil in the stream, the sheets are 
treated each as an undisturbed segment. The number of 
segments in the two sheets need not be equal. At any 
station i (I < i < M) the y co-ordinate of the upper and 
lower streamline bounding the sheet is Yi, z~ respectively. 

Applying the Biot-Savart law, the vortex sheet 
induced velocity at any point (x, y) in the field is given by 

, o9'1t'~ "T ~ (y - r/) d r / d ~  ~'~(?" Y) = ~ I . -~  , (x - ¢)' + (y - ~)5 

M-,  . . . .  M (Y -- r/) d r / d ~ !  
+ ,=,Z (,:o,), + .~.P .,. (x _ ¢)5 T (y - ~)~ 1 

(3.1) 

v'(.,-, y) = - 2,~ I : - ~  , ,  (x - 4) 5 .+ (y - / ' ] )5  dr/ de  

M - I  I . . . .  M (X -- 4) dr /de!  
+ i=lZ (U-~eg) i "3U "XM "YMI (X -- 4) 5 ~ (y -- /,])5 l 

(3.2) 
where: 

.~,+, .~lCl (Y - r/) dr /de 
0,=~), = l (x - ¢)~ + (y /'])5 

• xi " y{¢) 

.x,+, .z{¢I (x - 4) dr/de 
(~:o~), = I (~ _ 4)5 ¥ (y /'])5 "xl "Y{~I 

The aerofoil is represented by a continuous vorticity 
distribution along its contour. This contour is defined by 
a number of points j (1 < j  < 2L + 1) with high concen- 
tration in the leading and trailing edge regions. Between 
any two adjacent points the vorticity 7' is assumed to 
vary linearly. 

In vectoral form the induced velocity at any point 
(x, y) (lying on or outside of the aerofoil contour)due to 
the y' distribution on the aerofoil is (13). 

1 ~ l'q ~" x y'(s)ds£ 
~.;(x, y) = ~ J=, -o r5 (3.3) 

This can be expressed in the geometrical influence 
cocfficient form. 

1 2L  1 2 L +  1 
, 

':J+' ~ j=  .'o(x. y ) =  ~ y~ (c,)jyj + ( c A  " = (D,)j~,; 
j = l  

(3.4) 
1 2L 

2rt j= (C3)j7; + (C4)j}'j+l 

1 2L+l 
- ~ ,  (Os)j ~' 

2re j= 

(xj, zj) (XM.l, ZM. t ) 
(Xl, zl) (xs' ~ ( X M ,  ZM) 

, I 
I ( x 2 ~ Y J )  ~ - 1 )  (xt,Yl) 

(XM, YM) 

Fig. 2a. A segmented plane modified vortex sheet 

v..', (x, y)[= 

(3.5) 

(xj +l,yj ~'i) 

(x,y) 

/~ (xj, yj) 

Is 
lj 

Fig. 2b. Integration nomenclature 
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where 

(C2)j-1, (C,)j-1 are zero for j = 1 
(CI)j,(C3) j are zero for j = 2 L + I  

4 M E T H O D  O F  S O L U T I O N  

An iteration technique is necessary to gain a solution. 
Convergence of iteration is gained on the modified con- 
tinuity eq. (2.1a) on the aerofoil surface and the four free 
streamlines. Iteration is dependent upon the way that 
the flow tangency is fulfilled at these boundaries. 

Four main steps are considered and are described in 
more detail in Appendices. 
(a) Every iteration begins with an initial assumption for 

the position of the free streamlines. Often, it is 
adequate to assume them to be unaffected by the 
aerofoil: however, when the aerofoil is in the vicin- 
ity of a vortex sheet or is expected to be immersed 
in it, an initial assumption must avoid the situation 
of the streamline passing through the aerofoii. 

(b) The second step is to determine the vortex distribu- 
tion around the aerofoil. Applying the condition of 
no cross-flow at the middle of elements defining the 
aerofoil and using the Kutta-Joukowski assump- 
tion, a solution results from the equations of the 
components of the aerofoil surface velocity in terms 
of the unknown induced effects of the vorticity dis- 
tribution (7') around the aerofoil. (Appendix A). 

(c) In the third step the position of the streamlines, the 
only independent unknown in the problem, is ad- 
justed (Appendix B). 

At the aerofoil surface the adjustment in position 
of the vortex sheets produces a new vorticity dis- 
tribution around the aerofoil and, feeding back to 
the second step, an incremental change of induced 
velocity at the free streamlines. 

(d) The fourth step is to evaluate the lift force on the 
aerofoil. The static pressure distribution around 
the aerofoil is obtained by applying the Bernoulli 
equation along a streamline within a vortex sheet. 
It is, however, necessary to locate the stagnation 
streamline. To do this we may calculate the velocity 
profile in the region between the aerofoil and any 
bounding streamlines. The mass flow rate in the 
region is obtained by integrating the velocity 
profile and, knowing that the corresponding free 
stream velocity profile in this region is linear, we 
can determine the position of the stagnation 
streamline. 

S NUMERICAL RESULTS 

For a case study a combined temperature/pressure dis- 
tortion was chosen. Distortion levels were for the stagna- 
tion temperature 50°C above ambient and stagnation 
pressure was increased so that, in the distortion region 
dynamic head was 1"56 times that in undistorted flow. 

The aerofoil used was ofsymmetrical section of 7.4 cm 
chord with thickness/chord ratio of 14 per cent at 35 per 
cent chord. The aerofoil angle of attack was maintained 
throughout at 4 ° and in the calculation the aerofoil was 
moved incrementally across the distortion. 

Figures 3 to 9 show computer results for the location 
of the free streamlines and the pressure coefficient dis- 
tribution around the aerofoil. All streamline plots have a 

c 

Fig. 3a. Streamline pattern with the effect of the aerofoil, h/w = 0.822 

Cp 

2 

-1 

Pressure Distr ibution 
Predicted 

- -  With shear flow present  

. . . .  For uni form condi t ions  

/" ' ~"'~' x/c 

Fig. 3b. Aerofoil pressure coefficient distribution, h/w = 0'822 

Fig. 4a. Streamline pattern with the effect of the aerofoil, h/w = 0.63 

Fig. 4b. 

Cp 

2 

0 / ,  '~'~' x/c 

-1 
Aerofoil pressure coefficient distribution, h/w = 0-63 
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Fig. 5b. 

-1 

I I I i 

Streamline pattern with the effect of the aerofoil, h/w = 0.543 

Cp 

Fig. 7b. 

1 

x/c 

Aerofoil pressure coefficient distribution, h/w = 0.543 

Fig. 7a. Streamline 
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h/w = -0 .407  

Cp 
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aerofoiL 

Aerofoil pressure coefficient distribution, h/w = -0 .407  

tS 

Fig. 6a. Streamline pattern with the effect of  the aerofoil, h/w = 0.371 
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Fig. 8a. Streamline pattern with the effect of the aerofoil, 
h/w = - 0 . 5 2  

Cp 

-1 

\ 

1 
-"~'~' x/c 

Fig. 6b. Aerofoil pressure coefficient distribution, hlw = 0-371 Fig. 8b. Aerofoil pressure coeffici~:nt distribution, h/w = - 0 . 5 2  

INT..I. HEAT & FLUID FLOW Vol I No 3 



138 A . A . F .  HASHEM AND R. E. PEACOCK 

J 

Fig. 9a. Streamline pattern with the effect of the aerofoil, h/w = -0"6 

Cp 

2 

-1 ¸ 

1 
/ ' x / c  

Fig. 9b. Aerofoil pressure coefficient distribution, h/w = -0 .6  

4:1 linear magnification factor in the y' co-ordinate, re- 
sulting in magnified streamline curvature and a fat look- 
ing aerofoil. All pressure coefficient distributions are 
compared to that for uniform flow. The  uniform flow 
velocity and its corresponding density were used as 
reference values for the dynamic head in all cases. Thus: 

Cp = P - Pl 
@u'%w=_ ,.2 

The figures indicate that as the aerofoii approached 
the upper vortex sheet from either side (above or below) 
(Figs. 4 and 5) it experienced a lift reduction. In the 
vicinity of the lower vortex sheet (Figs. 7 and 8) the 
reverse was true, lift increasing. It may therefore be 
concluded that when an aerofoil is in the vicinity of 
vorticity whose sense is the same as that of an aerofoil 
circulation, the lift is increased and when in the vicinity 
of vorticity whose sense is in the other direction, its lift is 
decreased compared with uniform flow operation. This 
observation is confirmed by experimental results (9) 
where instrumented rotor blades in compressors were 
subjected to a wide range ofpitchwise distortions. In the 
experiments described in (9) the distortions were all in 
the form of pressure decrements so that to the advancing 
aerofoil the distortion was recognised initially as a 
region of vorticity whose sensewas opposite to the aero- 
foil lifting vortex. The resulting effect upon the aerofoil 
was a reduction in lift growing as the aerofoil ap- 

proached the distortion. In an experiment parallel with 
this analytical model (10), a distortion seen initially by 
an approaching aerofoil as a vortex of the same sense as 
the aerofoil lifting vortex yielded at the aerofoii an in- 
creased lift, growing as the aerofoil approached the dis- 
tortion. This is of course the technique of the blown flap. 

Pressures on the aerofoil suction surface were con- 
sistently more sensitive to shear than those on the pres- 
sure surface: the cases shown in Figs. 4 and 5 indicate 
this showing more depression in the aerofoil suction sur- 
face pressure distribution with the vortex sheet passing 
over it than change in the pressure surface pressure dis- 
tribution when the vortex sheet passed on that side of 
the aerofoil. This is confirmed when the aerofoil is close 
to the lower vortex sheet (Figs. 7 and 8). The reason for 
this may be seen in applying the Bernoulli equation to 
relate an incremental change in pressure with an in- 
cremental change in velocity: 

Ap = -T- ½Po(2U' A U ' +  AU '2) 

If two incremental velocities, AU' equal in magnitude 
and induced by the vortex sheet, pass on either side of 
the aerofoil the effect on the suction side is magnified on 
account of the generally higher velocity U' on that side 
increasing relatively the term 2U' AU'. 

The effect of a vortex passing the convex surface of an 
aerofoil is therefore larger than that for the same vortex 
passing the concave surface of the same aerofoil. Vor- 
tices of the same sense passing on either side of an aero- 
foil however have a similar effect upon the lift of the 
aerofoil. It may thus be concluded that an aerofoil im- 
mersed in an uniformly sheared flow, vortices of tile 
same sense passing on either side, experiences the maxi- 
mum change in lift. This particular calculation was not 
included in the programme, although a technique was 
discussed (Section 4.0) for locating the stagnation 
streamline when the aerofoil is in the shear region. 

Considering Figs. 4 and 8 and also Figs. 5 and 7 
paired respectively it is possible to establish the con- 
sequence of symmetrical types of shear flow passing an 
aerofoil. Figs. 4 and 8 united represent a symmetrical 
shear flow with a velocity decrement at the centre-line. 
Such a shear could be representative of the axial velocity 
distribution downstream ofa  propellor operating at part 
power conditions. The overall effect upon the aerofoil 
would be an additional lift increment, so long as the 
aerofoil was at an incidence or had camber. The reverse 
situation, in which a symmetrical distortion had its max- 
imum velocity at the distortion centre-line, represented 
by uniting Figs. 5 and 7, would give an overall reduction 
in lift. 

Integration of the pressure coefficient distributions 
(Figs. 3b to 9b) into a lift coefficient, non- 
dimensionalized in dividing by the inlet dynamic head 
remote from the distortion region 

(CL)h/w = (L)h/w 
( ½ p u ' % / . =  _ 

is plotted against aerofoil position (h/w) with respect to 
the distortion in Fig. 10b for the distortion geometry 
shown in Fig. 10a. The increased lift coefficient in the 
distortion region reflects the locally higher velocity level 
which does not, in this case, appear in the denominator 
of the parameter. The curve then is an indication of 
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Fig. 10a. The distortion geometry 
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Fig. 10c. Lift coefficient compared with that for uniform flow 

variation of lift experienced by the aerofoil. Tile effect of 
the high velocity level in the distortion is removed by 
defining a new parameter (CL/C'L)h/w where C[ is the lift 
coefficient for uniform flow conditions using local inlet 
dynamic head. Thus, the plot of (CL/C'L)h/w (Fig. 10c) 
shows as a deviation from unity value the effect of shear 
flow only. The shear flow effect thus caused excursions in 
lift coefficient of between +45 per cent and - 2 5  per 
cent, values which logically would be increased with the 
aerofoil positioned within the shear layers as discussed. 
The manner of fluctuation bears some resemblance to 
the dynamic response of rotor blades operating in 
distorted flow fields (9) but in that work, changes of 
rotor incidence, a consequence of the effect of a changing 
axial velocity, produced major excursions in lift 
coefficient. In addition large scale flow separations were 
measured in that experiment, complicating further the 
picture presented here. It is noted though that with fav- 
ourable vorticity passing the aerofoil suction surface the 
aerofoil lift can be increased theoretically by as much as 
45 per cent without immersion of the aerofoil in the 
shear flow. It may then be postulated that in an aircraft 
installation a gas turbine engine mounted ahead of and 
above the wing could result in an appreciable improve- 
ment in wing lift without the engine exhaust touching 
the wing structure. 

The shear flow effect demonstrated in Fig. 10c is 
weakened as the width of the shear layer is increased, 

while maintaining the terminating modified velocity 
levels the same, effectively reducing Ou'/ay. 

Since the treatment of this paper has no time- 
dependency though, it might be concluded tentatively 
that the time-unsteady contributions to the rotor re- 
sponse of (9) is greater than at first imagined, a re- 
inforcement of the justification, outlined in Section 1.0, 
for applying the quasi-steady solution to a compressor. 

It may be noted that in all cases treated, no more than 
three iterations were ever necessary to obtain conver- 
gence of the lift coefficient within 1"5 per cent of its 
previous value. This value does not however represent a 
limitation in the model, but an arbitrarily chosen accur- 
acy in this case for economy of computer time. 

6 CONCLUSIONS 

Density variation and vorticity are two major par- 
ameters in non-uniform flow fields. For two- 
dimensional, steady-state, low speed, non-viscous flows, 
the mathematical technique adopted shows that, re- 
gardless of density variations, the flow in the modified 
plane may be treated, by use of a velocity transforma- 
tion, as classical incompressible. 

A non-linear, large disturbance, mathematical model 
established to determine the correct location of the free 
streamlines, converges rapidly when the first order deri- 
vatives of the induced velocity of the two vortex sheets 
and the aerofoil are considered in applying the modified 
continuity equation. 

The results of this model show the aerofoil lift 
coefficient to increase when the aerofoil is close to, but 
not necessarily immersed within, a vortex sheet whose 
vorticity has the same sense as the aerofoil circulation. 
Conversely the influence of a vortex sheet whose vorti- 
city is in the other sense results in a reduction ofaerofoil 
lift coefficient. A symmetrical vorticity pattern, whose 
components are divided by the aerofoil, produces a nett 
change of lift at the aerofoil, positive or negative depend- 
ing upon whether the sense of the vortex passing the 
suction surface is of the same or opposite sense to the 
aerofoil lifting vortex. This arises from the observation 
that in all cases the aerofoil suction surface pressure 
distribution is more sensitive than that of the pressure 
surface to the proximity of a vortex sheet. These results 
could go some way towards explaining high lift 
coefficients measured on compressor rotors in distortion 
fields and they show that what has been considered as a 
non-steady response is at least partially caused by a 
shear flow effect without time-dependency. In an 
aircraft, the interactions noted could be used advan- 
tageously with a propellor/wing or gas turbine 
exhaust/wing combination. 
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APPENDIX A 

The second step in the method of solution (Section 4.0) 
is to determine the vortex distribution y' around the 
aerofoil. 

At the aerofoil surface the velocity is given by 

U'a af.s = U'a(y') + U's + U~ (A.1) 

v' ar.s = ' (A.2) o'.(/) + os 

Where u'~(y'), v'(y') are the unknown induced effects of 
the distribution around the aerofoil. 

Applying the condition of  no cross-flow at the middle 
of each element defining the aerofoil, 2L equations 
result. Adding the Kutta-Joukowski conditions 

r~ = ' (A 3) - -~2L+I  

the number of unknowns is made equal to the number of 
equations. Presented in matrix form we have: 

1 
[y'] = ~ [O]-*[v'] (A.4) 

APPENDIX B 

The third step in the method of solution (Section 4.0) is 
to adjust the position of  the free streamlines. 

Consider the lower streamline of  the two vortex sheets 
(the same applies to the upper streamline). At an inter- 
mediate point kon  the segment k of  this streamline, apart 

from being at the exact position, the modified continuity 
equation in numerical difference form can be written as 

U'(Xl~, Y~)(Xk+ 1 --  "~_k) --  h"(X~', YtZ)(Yk+ i --  Yk) = E [  (B.I )  

where 

Xk+l + Xk Yk+l + Y k  x~" = , y~ = 
2 2 

To obtain the correct solution we assume that at each 
station i( i  = 2 --.+ M - I ,  M + 2 ---, M + N - l )  of the 
two vortex sheets a vertical displacement Aye, Azi is 
needed for both lower and upper streamlines respec- 
tively. Considering only first order terms, the consequent 
incremental change in the two vortex sheets induced vel= 
ocity is 

Au~(x, y + Ay) 
M - I  

= E  
i= l  

M- !  

+ E  
i= l  
M+N-I  

+ 2 
i=M+l 
M+N-I  

+ E 
i=M+* 

Av'~(x, y + Ay) 
M-1 

- - E  
i= l  

M--1 

+ E  
i = l  
M+N-1 

+ 2 
i=M+ 1 
M+N-I  

+ E 
i=M+l 

where 

[(Q,)i + (Pt)i-,] 6yi 

+ 

[(Ql)i + (P,)i-,]  6yi 

[(Qz)i + (P2)i-t] 6zi 

[(Qa)~ + (P3)~-,] 3Yi 

[(Q,)i + (P4) i - , ]  6zi 

[(Q3), + (P3)~-x] cSYl 

[(Q4)i + (P4) i - , ]  ¢~z, 

(B.2) 

(s.3) 

(Q,)~ = d(U'sc,)~ 

dyi ' 

az  i ' 

(Q3), = 0(o's~,)i 
Oyi ' 

- 

(P2), = a(.'.o.)i+, 
~2i + 1 

(&), _- 
Oyi + 1 

( Q . ) i -  +___1 
OZ'---~i , (P4)i = Ozi + 1 

All Q,, Q2, Qa, Q4 are equal to zero for both values of 
i = I, M + I. Also P,, P2, P3, P4 are equal to zero for 
i = M - I, M + N - I. This follows from the assump- 
tion that at the first and last station of each vortex sheet 
the aerofoil induced effect is vanishing. 

On the aerofoil surface the change of  the two vortex 
sheets induced velocity will produce a new vorticity dis- 
tribution around the aerofoil. The incremental change 

INT. J. HEAT & FLUID FLOW Vol ! No 3 



INTERACTIVE EFFECTS BETWEEN AEROFOILS 141 

Ay' is given by 

t =l tay  
q- E t~y i 4- - -  6Z i 

i=M+l  ~OYi 6~2i 
(B.4) 

Now we reconsider the aerofoil induced effect at points 
on the displaced (Ayi, Azi)streamlines. Ignoring second 
and higher order terms, it can be shown that the in- 
cremental change in the aerofoil induced velocity is 

= ( D , ) j  Au'..,(x, y + Ay) ~ j=l 

I( ' D2) j A),j Ave(x, y + Ay) = ~ J=, 

a(D,)j ] 

(B.5) 

8(D2)j ] 
+ ~ j - - - ~ - y  6y 

(B.6) 

Summing up we are effectively performing a feed back 
loop, from the vortex sheets position to the change in the 
vortex distribution around the aerofoil and back to the 
incremental induced velocity at the streamlines. This be- 
comes increasingly important as the aerofoil moves 
closer to one of the vortex sheets. 

Finally we return to the previously considered point k- 
in its new position. Combining eqs. (B.2), (B.3), (B.5) and 
(B.6) in the numerical difference form of the modified 

continuity equation we get 

[v'(x~, yr,) + Av~(x~, Yr< + Aye) + av'a(xr,, y~ + Aye)] 

x (Xk +1 -- Xk)-- [U'(X~, yf,) + Au~(x~, y~, + Aye) 

+ Au'(x~, y~ + Ay~)](yk+ 1 - -  Yk + fiYk+l - -  Ayk)  

= 0 (B.7)  

Manipulating equations (B.7) and (B. 1) with second and 
higher order terms ignored, then 

- u'(xr,, y~)](Ayk +1 -- Ayk) 

-- [Au~(x¢, y~- + Ayr,) + Au..',(x~, y~, + AyF,)] 

x (Yk+t -- Yk)= --E~ (B.8) 

Equation (B.8) is linear and contains all the unknown 
required displacements Ayi, Az~ (i = 2 ~ M -  1, i =  
M + 2 ~ M + N - 1) of the four streamlines. 

As the first and last segments orboth  the vortex sheets 
are located symmetrically further apart from the aerofoil 
(where its induced effect is vanishingly small) the 
modified continuity equation applied there produces 
two almost identical equations. Excluding one we are 
left with the determinate set of equations. 

Having only considered first order terms throughout 
the derivation, the solution of the equations is not exact. 
Iteration proceeds until the lift force on the ae'rofoil is 
practically constant. 
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